2013-08-05

Detecting and Polarizing Nuclear Spins with Double Resonance on a Single Electron Spin

P. London, J. Scheuer, J.-M. Cai, I. Schwarz, A. Retzker, M. B. Plenio, M. Katagiri, T. Teraji, S. Koizumi, J. Isoya, R. Fischer, L. P. McGuinness, B. Naydenov, and F. Jelezko, Phys. Rev. Lett. 111, 067601(2013)

We report the detection and polarization of nuclear spins in diamond at room temperature by using a single nitrogen-vacancy (NV) center.

Detecting and Polarizing Nuclear Spins with Double Resonance on a Single Electron Spin

P. London, J. Scheuer, J.-M. Cai, I. Schwarz, A. Retzker, M. B. Plenio, M. Katagiri, T. Teraji, S. Koizumi, J. Isoya, R. Fischer, L. P. McGuinness, B. Naydenov, and F. Jelezko, Phys. Rev. Lett. 111, 067601 (2013)

We report the detection and polarization of nuclear spins in diamond at room temperature by using a single nitrogen-vacancy (NV) center. We use Hartmann-Hahn double resonance to coherently enhance the signal from a single nuclear spin while decoupling from the noisy spin bath, which otherwise limits the detection sensitivity. As a proof of principle, we (i) observe coherent oscillations between the NV center and a weakly coupled nuclear spin and (ii) demonstrate nuclear-bath cooling, which prolongs the coherence time of the NV sensor by more than a factor of 5. Our results provide a route to nanometer scale magnetic resonance imaging and novel quantum information processing protocols.